Genetic Activation of Hedgehog Signaling Unbalances the Rate of Neural Stem Cell Renewal by Increasing Symmetric Divisions

نویسندگان

  • Julien Ferent
  • Loïc Cochard
  • Hélène Faure
  • Maurizio Taddei
  • Heidi Hahn
  • Martial Ruat
  • Elisabeth Traiffort
چکیده

In the adult brain, self-renewal is essential for the persistence of neural stem cells (NSCs) throughout life, but its regulation is still poorly understood. One NSC can give birth to two NSCs or one NSC and one transient progenitor. A correct balance is necessary for the maintenance of germinal areas, and understanding the molecular mechanisms underlying NSC division mode is clearly important. Here, we report a function of the Sonic Hedgehog (SHH) receptor Patched in the direct control of long-term NSC self-renewal in the subependymal zone. We show that genetic conditional activation of SHH signaling in adult NSCs leads to their expansion and the depletion of their direct progeny. These phenotypes are associated in vitro with an increase in NSC symmetric division in a process involving NOTCH signaling. Together, our results demonstrate a tight control of adult neurogenesis and NSC renewal driven by Patched.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling

Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH) signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific ...

متن کامل

Sonic Hedgehog and Notch Signaling Can Cooperate to Regulate Neurogenic Divisions of Neocortical Progenitors

BACKGROUND Hedgehog (Hh) signaling is crucial for the generation and maintenance of both embryonic and adult stem cells, thereby regulating development and tissue homeostasis. In the developing neocortex, Sonic Hedgehog (Shh) regulates neural progenitor cell proliferation. During neurogenesis, radial glial cells of the ventricular zone (VZ) are the predominant neocortical progenitors that gener...

متن کامل

Signaling pathways involved in chronic myeloid leukemia pathogenesis: the importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells

Objective(s): Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential ...

متن کامل

Isolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells

Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...

متن کامل

Functional Inhibition of Nucleostemin Gene-Acoordinator of Self-Renewal Ability-In Bone Marrow Derived Mesenchymal Stem Cells by Rnai Strategy

Purpose: The aim is to downregulate the expression level of NS as an important factor in sustaining stem cells and certain types of cancer cells self-renewal ability in bone marrow derived mesenchymal stem cells by RNAi strategy and investigate the effects of absence of NS in these cells. Materials and Methods: Double strand NS-specific and control siRNA oligos were designed and transfected in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014